메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
조현태 (동명대학교)
저널정보
대한임베디드공학회 대한임베디드공학회논문지 대한임베디드공학회논문지 제19권 제1호
발행연도
2024.2
수록면
57 - 64 (8page)
DOI
10.14372/IEMEK.2024.19.1.57

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In the industrial field, robots are used to increase productivity by replacing labors with dangerous, difficult, and hard tasks. However, failures of individual industrial robots in the entire production process may cause product defects or malfunctions, and may cause dangerous disasters in the case of manufacturing parts used in automobiles and aircrafts. Although requirements for early diagnosis of industrial robot failures are steadily increasing, there are many limitations in early detection. This paper introduces methods for diagnosing robot failures using sound-based data and deep learning. This paper also analyzes, compares, and evaluates the performance of failure diagnosis using various deep learning technologies. Furthermore, in order to improve the performance of the fault diagnosis system using deep learning technology, we propose a method to increase the accuracy of fault diagnosis based on an inference window. When adopting the inference window of deep learning, the accuracy of the failure diagnosis was increased up to 94%.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0