메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Mateo Restrepo Mejia (Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai) Juan Sebastian Arroyave (Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai) Michael Saturno (Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai) Laura Chelsea Mazudie Ndjonko (Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai) Bashar Zaidat (Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai) Rami Rajjoub (Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai) Wasil Ahmed (Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai) Ivan Zapolsky (Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai) Samuel K. Cho (Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai)
저널정보
대한척추신경외과학회 Neurospine Neurospine Vol.21 No.1
발행연도
2024.3
수록면
149 - 158 (10page)
DOI
10.14245/ns.2347052.526

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective: Large language models like chat generative pre-trained transformer (ChatGPT) have found success in various sectors, but their application in the medical field remains limited. This study aimed to assess the feasibility of using ChatGPT to provide accurate medical information to patients, specifically evaluating how well ChatGPT versions 3.5 and 4 aligned with the 2012 North American Spine Society (NASS) guidelines for lumbar disk herniation with radiculopathy. Methods: ChatGPT's responses to questions based on the NASS guidelines were analyzed for accuracy. Three new categories—overconclusiveness, supplementary information, and incompleteness—were introduced to deepen the analysis. Overconclusiveness referred to recommendations not mentioned in the NASS guidelines, supplementary information denoted additional relevant details, and incompleteness indicated omitted crucial information from the NASS guidelines. Results: Out of 29 clinical guidelines evaluated, ChatGPT-3.5 demonstrated accuracy in 15 responses (52%), while ChatGPT-4 achieved accuracy in 17 responses (59%). ChatGPT-3.5 was overconclusive in 14 responses (48%), while ChatGPT-4 exhibited overconclusiveness in 13 responses (45%). Additionally, ChatGPT-3.5 provided supplementary information in 24 responses (83%), and ChatGPT-4 provided supplemental information in 27 responses (93%). In terms of incompleteness, ChatGPT-3.5 displayed this in 11 responses (38%), while ChatGPT-4 showed incompleteness in 8 responses (23%). Conclusion: ChatGPT shows promise for clinical decision-making, but both patients and healthcare providers should exercise caution to ensure safety and quality of care. While these results are encouraging, further research is necessary to validate the use of large language models in clinical settings.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0