메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이충열 (고려대학교) 황명진 (고려대학교) 김정학 (고려대학교) 이지나 (고려대학교 사회복지학과 강사) 이동찬 (고려대학교 일반대학원 경제통계학과 국가통계전공 박사과정) 김기환 (고려대학교)
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제26권 제1호
발행연도
2024.2
수록면
135 - 149 (15page)
DOI
10.37727/jkdas.2024.26.1.135

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구는 AI, 빅데이터, 전문가 판단을 결합하여 정부의 세부 사업 예산을 분석한 것이다. 정부의 세부 사업을 기존 분류가 아닌 최근 발표된 ‘2023년 핵심 사회정책 추진계획’의 27개 사회정책 의제 분류를 사용했으며, 아울러 생애주기도 분류 기준으로 사용하였다. 세부 사업을 설명하는 텍스트 데이터의 의미를 파악하고 분류하기 위해 자연어 처리기술을 사용하였으며 2020~2023년 정부의 세부 사업과 예산을 27개 의제에 따라 성공적으로 분류하였다. 분류과정에서 ‘NKIS’, ‘열린재정’의 공공데이터를 활용하였으며 자연어처리 기술로는 KeyBERT를 사용하였다. 분류 결과 27개 의제에 따른 정부 세부 사업 건수 및 예산의 연도별 변화, 27개 의제별 세부 사업의 불균형 정도를 확인할 수 있었다. 아울러 생애주기별 분류 결과 세부 사업과 예산이 누구를 위해 사용되고 있는지도 확인할 수 있었다. 최종 결과작성에서 자연어처리 기술이 많은 부분을 해결해 주었지만, 전문가의 지식과 판단이 중요한 역할을 하였다. 연구 결과에 따르면 효율적인 예산 집행, 행정기관 간 협력을 어떻게 해야 하는지에 관한 판단 근거를 찾을 수 있다. 또한 27개 사회정책 이슈, 생애주기 별로 좀 더 깊이 있는 분야별 연구가 가능할 것으로 기대된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0