메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Behmadi Marziyeh (Cancer Research Center, Semnan University of Medical Sciences) Mohammadi Sara (Medical Physics Department, Gonabad University of Medical Sciences) Ravari Mohammad Ehsan (Semnan University of Medical Sciences) Mohammadi Aghil (Energy Engineering and Physics Department, Amir Kabir University of Technology) Loushab Mahdy Ebrahimi (Department of Physics, Faculty of Shahid Rajaee, Quchan Branch, Technical and Vocational University) Bahreyni Toossi Mohammad Taghi (Medical Physics Research Center, Mashhad University of Medical Sciences) Ghergherehchi Mitra (Department of Electrical and Computer Engineering, Sungkyunkwan University)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology Vol.56 No.2
발행연도
2024.2
수록면
753 - 761 (9page)
DOI
10.1016/j.net.2023.11.014

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Introduction: In this study, TLD 600 and TLD 700 pairs were used to measure the neutron dose of Elekta Precise medical linac. To this end, the optimum moderate thickness for the conversion of fast to thermal neutrons were evaluated. Materials and methods: 241Am-Be and 252Cf sources were simulated to calculate the optimum thicknesses of the moderator for the conversion of maximum fast neutrons (FN) into thermal neutrons (TN). Pair TLDs were used to measure F&TN doses for three different field sizes at four depths of the medical linac. Results: The maximum thickness of the moderator was optimized at 6 cm. The measurement results demonstrated that the TN dose increased with the expansion of field size and depth. The FN dose, which was converted TN, exhibits behaviors comparable to the TN due to its nature. Conclusion: This study presents the optimum thickness for the moderator to convert FN into TN and measure F&TN using TLDs.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0