메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ijaz Ahmad (Chosun University) Seokjoo Shin (Chosun University)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제49권 제8호
발행연도
2024.8
수록면
1,132 - 1,140 (9page)
DOI
10.7840/kics.2024.49.8.1132

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Perceptual Encryption (PE) provides an efficient solution to the requirement of cipher images format-compatibility of photo-storage and photo-sharing applications. They deliver a desired level of security while preserving image intrinsic properties necessary to enable image processing such as image compression, in the encrypted domain. PE methods implement blockwise geometric and color transformation functions wherein the choice of block size results in a tradeoff relationship between encryption efficiency and compression savings. Nonetheless PE methods that incorporate sub-block level processing alongside block level processing can better manage this tradeoff. However, such methods have a compatibility issue with the JPEG lossy standard as the recovered images have subsampling distortions. Specifically, it cannot avoid the blur distortion resulted from the subsampling of the luminance component that is shuffled with the chroma component of the image during encryption. To address this limitation, we propose a color transformation function for the sub-block-based PE algorithms that integrates the image component shuffling step of encryption with the chroma subsampling function of compression. The simulation analyses show that the images are decoded without any visible artifacts and distortions. In addition, the proposed function reduces the datarate difference by 87% at maximum and 18% at minimum for different sub-block sizes.

목차

ABSTRACT
Ⅰ. Introduction
Ⅱ. Proposed Method
Ⅲ. Results
Ⅳ. Conclusions and Future Work
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0