메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
신유식 (국립목포대학교) 임창현 (국립목포대학교) 신영학 (국립목포대학교)
저널정보
대한전자공학회 대한전자공학회 학술대회 2024년도 대한전자공학회 하계학술대회 논문집
발행연도
2024.6
수록면
2,651 - 2,654 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
For the continuous production of Paralichthys olivaceus, a farmed fish, we aim to use a deep learning image classification model to initially diagnose disease symptoms occurring within the organs of Paralichthys olivaceus. However, Paralichthys olivaceus"s organs have a severe imbalance in the number of normal and disease symptom data, which contributes to the performance degradation of image classification models. In this study, various methods such as oversampling, data augmentation techniques, and the Focal Loss function are explored to overcome data imbalance. And the performance before and after applying these imbalance resolution methods was compared and analyzed using the latest deep learning image classification models. As a result of the experiment, the data augmentation technique showed overall performance improvement across all models.

목차

Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험 결과
Ⅳ. 결론 및 향후 연구 방향
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0