메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Taicheng Jin (Sejong University) Nur Alam (Sejong University) Wenqi Zhang (Sejong University) Jiwon Kim (Sejong University) L. Minh Dang (Sejong University) Hyeonjoon Moon (Sejong University)
저널정보
대한전자공학회 대한전자공학회 학술대회 2024년도 대한전자공학회 하계학술대회 논문집
발행연도
2024.6
수록면
1,521 - 1,525 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The field of electronics is growing and QR (Quick Response) codes have become essential. Two-dimensional barcodes known as QR codes have the capacity to carry a substantial amount of information in comparison to one-dimensional barcodes, due to their ability to act as information carriers. They may also be quickly detected by portable devices. These days, QR codes are employed in a variety of sectors, including payments, website and application connecting, and authenticity verification. They have gained wide acceptance and popularity across society. Although the application of QR code for authenticity verification has become more convenient, there are still a number of challenges that need to be addressed for effective authenticity verification in real-world applications. In this paper, we propose the use of a CNN-based model enhanced with the DCT (Discrete Cosine Transform) [1] technique to extract high-frequency information from images to improve the model’s ability to validate authenticity. Our model has an accuracy rate of 99.5%, which is the highest performance when compared to other popular CNN-based models.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Dataset
Ⅲ. Methodology
Ⅳ. Experimental results
Ⅴ. Conclusion
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0