메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sang-Hoon Oh (Mokwon University) Hiroshi Wakuya (Saga University) Sun-Gyu Park (Mokwon University) Hwang-Woo Noh (Hanbat National University) Jae-Soo Yoo (Chungbuk National University) Byung-Won Min (Mokwon University) Yong-Sun Oh (Mokwon University)
저널정보
한국콘텐츠학회(IJOC) International JOURNAL OF CONTENTS International JOURNAL OF CONTENTS Vol.11 No.2
발행연도
2015.6
수록면
57 - 62 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Relative entropy is a divergence measure between two probability density functions of a random variable. Assuming that the random variable has only two alphabets, the relative entropy becomes a cross-entropy error function that can accelerate training convergence of multi-layer perceptron neural networks. Also, the n-th order extension of cross-entropy (nCE) error function exhibits an improved performance in viewpoints of learning convergence and generalization capability. In this paper, we derive a new divergence measure between two probability density functions from the nCE error function. And the new divergence measure is compared with the relative entropy through the use of three-dimensional plots.

목차

ABSTRACT
1. INTRODUCTION
2. RELATIVE ENTROPY AND CROSS-ENTROPY
3. NEW DIVERGENC MEASURE FROM THE n-th ORDER EXTENSION OF CROSS-ENTROPY
4. CONCLUSIONS
REFERENCES

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090385081