메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
NgocBinh Nguyen (Le Quy Don Technical University) Van-Sang Doan (Vietnam Naval Academy) MinhNghia Pham (Le Quy Don Technical University) VanNhu Le (Le Quy Don Technical University)
저널정보
한국전자파학회JEES Journal of Electromagnetic Engineering And Science Journal of Electromagnetic Engineering And Science Vol.24 No.4
발행연도
2024.7
수록면
358 - 369 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Current methods for daily human activity classification primarily rely on optical images from cameras or wearable sensors. Despite their high detection reliability, camera-based approaches suffer from several drawbacks, such as low-light conditions, limited range, and privacy concerns. To address these limitations, this article proposes the use of a frequency-modulated continuous wave radar sensor for activity recognition. A stacked-residual convolutional neural network (SRCNN) is introduced to classify daily human activities based on the micro-Doppler features of returned radar signals. The model employs a two-layer stacked-residual structure to reuse former features, thereby improving the classification accuracy. The model is fine-tuned with different hyperparameters to find a trade-off between classification accuracy and inference time. Evaluations are conducted through training and testing on both simulated and measured datasets. As a result, the SRCNN model with six stacked-residual blocks and 64 filters achieves the best performance, with accuracies exceeding 95% and 99% at 0 dB and 10 dB, respectively. Remarkably, the proposed model outperforms several state-of-the-art CNN models in terms of classification accuracy and execution time on the same datasets.

목차

Abstract
I. INTRODUCTION
II. FMCW RADAR AND DATASET DESCRIPTION
III. PROPOSED SRCNN-BASED ACTIVITY CLASSIFICATION
IV. EXPERIMENTAL AND COMPARISON RESULTS
V. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090355903