메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이경호 (한국에너지기술연구원) 주홍진 (한국에너지기술연구원) 안영섭 (한국에너지기술연구원) 이왕제 (한국에너지기술연구원)
저널정보
한국건축친환경설비학회 한국건축친환경설비학회 논문집 한국건축친환경설비학회 논문집 제18권 제3호
발행연도
2024.6
수록면
192 - 210 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The study represent a method to predict monthly annual energy performance of buildings is proposed by using short-term data to train models for building energy systems, followed by predicting monthly annual energy performance. The building energy system model is simplified in the TRNSYS environment to reduce parameters. A simulation case study for an office building was conducted using TRNSYS detailed models to generate data for training the simplified model. Training periods ranged from 2 to 8 weeks, covering heating and cooling periods. Annual net energy performance was defined by subtracting solar PVT module electricity production from heat pump electricity consumption. Weather information was assumed to be accurately known. The building energy system in this case study mainly comprised an air-source heat pump system, solar PVT modules, ground heat exchangers, a buffer thermal storage tanks and water-to-air heat exchangers and so on. Target elements for model simplifications included building thermal load, heat pump COP, electrical and thermal efficiency of solar PVT modules, and ground heat exchangers. Specifically, the building model was simplified from numerous parameters for Type 56 to four parameters for Type 88 lumped building model. Results of the proposed method showed over 90% accuracy with more than 6 weeks of training data based on NMBE error. The simplified model method can be applied when sufficient data for extended periods are unavailable, enabling prediction of monthly annual energy performance over long periods. Further studies should focus on training and evaluating using actual building data and improving the simplified model.

목차

ABSTRACT
서론
대상 건물 및 시스템 개요
TRNSYS 단순화 모델 학습과 예측적 성능분석
성능평가 방법 및 성능지표
성능평가 결과 및 적용성 제언
결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0