메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이종희 (Agricultural Cooperative University) 박선우 (Agricultural Cooperative University) 남기포 (Agricultural Cooperative University) 장진욱 (Agricultural Cooperative University) 이성호 (Hohyun F&C)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제29권 제7호(통권 제244호)
발행연도
2024.7
수록면
33 - 40 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
가축의 생체중은 건강 및 사육 환경 관리에 중요한 정보이고 이를 통해 최적 사료량이나 출하시기 등을 결정하게 된다. 일반적으로 가축의 무게를 측정할 때 체중계를 이용하지만, 체중계를 이용한 가축 무게를 측정하는데 상당한 인력과 시간이 필요하고 성장 단계별 측정이 어려워 사료급이량 조절 등의 효과적인 사육 방법이 적용되지 못하는 단점이 있다. 본 연구는 축산 양돈 분야에 영상 및 이미지 데이터를 수집, 분석, 학습, 예측 등을 통해 포유자돈, 이유자돈, 육성돈, 비육돈 구간별 체중 측정에 관한 연구와 함께 정확도를 높이고자 하였다. 이를 위해 파이토치(pytorch), YOLO(you only look once) 5 모델, 사이킷런(scikit learn) 라이브러리를 사용하여 학습시킨 결과, 실제치(actual)와 예측치(prediction) 그래프에서 RMSE(root mean square error) 0.4%와 MAPE(mean absolute percentage error) 0.2%로 유사한 흐름을 확인할 수 있다. 이는 양돈 분야의 포유자돈, 이유자돈, 육성돈, 비육돈 구간에서 활용할 수 있으며 다각도로 학습된 이미지 및 영상데이터와 실제 측정된 체중 데이터를 바탕으로 지속적인 정확도 향상이 가능하고 향후 영상판독을 통해 돼지의 부유별 생산량에 대한 예측으로 효율적인 사육관리가 가능할 것으로 기대된다.

목차

Abstract
요약
I. Introduction
II. Related Works
III. The Proposed Scheme
IV. Learning Results
V. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0