메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이희진 (Dongyang Mirae University) 김태영 (Clcom)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제29권 제7호(통권 제244호)
발행연도
2024.7
수록면
1 - 9 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 부트 스톰을 완화하고 서비스 안정성 향상을 위하여 AI 기반 VDI 사용 예측 시스템, 가상머신 부팅 스케줄러 시스템으로 구성된 부트 스톰 완화 방안인 BRAIDS를 제안한다. 가상 데스크톱 인프라(Virtual Desktop Infrastructure, VDI)는 조직의 업무 생산성 향상과 IT 인프라 효율성 증대를 위한 중요한 기술이다. 다수의 가상 데스크톱이 동시 부팅될 때 발생하는 부트 스톰은 성능저하와 대기 시간 증가를 유발한다. xgboost 알고리즘을 사용하여, 기존 VDI 사용 데이터를 활용하여 향후 VDI 사용량을 예측한다. 또한 예측된 사용량을 입력으로 받아 VDI 서버와 가상머신의 하드웨어 사양을 고려하여 부트 스톰을 정의하고, 부트 스톰을 완화하기 위하여 순차적으로 가상머신을 부팅할 수 있는 스케줄을 제공한다. 사례연구를 통하여 VDI 사용 예측 모델은 높은 예측 정확도와 성능 향상을 보였으며, 가상머신 부팅 스케줄러를 통하여 가상 데스크톱 환경에서의 부트 스톰 현상을 완화하고 효율적으로 IT 인프라를 활용할 수 있음을 확인하였다.

목차

Abstract
요약
I. Introduction
II. Related works
III. BRAIDS (Boot storm Reduction through Artificial Intelligence Driven System)
IV. VDI Usage Predictive Analytics System
V. Virtual Machine Booting Scheduler System
VI. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0