메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Pingyang Sun (UNSW Sydney) Rongcheng Wu (University of Technology Sydney) Gen Li (DTU) Muhammad Khalid (King Fahd University of Petroleum & Minerals) Graham Town (Macquarie University) Georgios Konstantinou (UNSW Sydney)
저널정보
전력전자학회 ICPE(ISPE)논문집 ICPE 2023-ECCE Asia
발행연도
2023.5
수록면
1,464 - 1,469 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In order to address the gap in comprehensive power flow (PF) analysis of multi-terminal medium-voltage direct current (MT-MVDC) distribution systems, this paper proposes a novel decoupled sequential PF algorithm based on Newton- Raphson (NR)/estimation-correction method. The presented algorithm is designed for an MT-MVDC distribution network and takes into account the PF equations of both generic ac/dc and dc/dc converters. The MVDC PF study is the main focus and the power losses of voltage source converters (VSCs) & dc/dc converters are considered for accurately deriving the dc powers at MVDC links. The proposed algorithm only requires to define a single dc power or current bus type, hence the bus type definition is simplified and the solution of multiple sub-Jacobian matrices can be avoided. A binary search method is employed to correct the estimated initial dc power/current values, which contributes to the searching time reduction. Although an external correction iteration is required in the dc PF derivation, the proposed algorithm still improves on the computation efficiency in comparison with coupled sequential ac/dc PF algorithms. An MT-MVDC distribution network incorporated into IEEE 14 bus system verifies the validity and efficiency of the proposed algorithm.

목차

Abstract
I. INTRODUCTION
II. CONVERTER MODELING
III. PROPOSED POWER FLOW ALGORITHM FOR MT-MVDC NETWORKS
IV. CASE STUDY
V. CONCLUSION AND DISCUSSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0