메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Daeung Jeong (Hanyang University) Jongwook Park (Hanyang University) Yohan Jang (Hanyang University) Sungwoo Bae (Hanyang University)
저널정보
전력전자학회 ICPE(ISPE)논문집 ICPE 2023-ECCE Asia
발행연도
2023.5
수록면
1,212 - 1,218 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Lithium iron phosphate batteries are currently popular in the electric vehicle market due to their high reliability and low price. However, due to the strong non-linearity of lithium iron phosphate open circuit voltage, it is difficult to estimate the state of charge with the traditional method. In this paper, a bidirectional long short-term memory model is used to accurately estimate the state-of-charge of a lithium iron phosphate battery in a usage environment such as an electric vehicle. A lithium iron phosphate battery charge/discharge test applying an electric vehicle driving cycle was preceded, and the state of charge estimation error was confirmed in the bidirectional long short-term memory model through the charge/discharge data. The mean absolute error of the bidirectional long short-term memory model was 1.80%, confirming the best performance among the deep learning models evaluated in this paper.

목차

Abstract
I. INTRODUCTION
II. LI-ION BATTERY CHARACTERISTIC
III. BI-LSTM FOR LFP BATTERY SOC ESTIMATION
IV. EXPERIMENT
V. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0