메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Shih-Wei Su (Technical University of Munich) Niklas Monzen (HM Munich University of Applied Sciences) Ralph Kennel (Technical University of Munich) Christoph M. Hackl (HM Munich University of Applied Sciences)
저널정보
전력전자학회 ICPE(ISPE)논문집 ICPE 2023-ECCE Asia
발행연도
2023.5
수록면
221 - 227 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents a self-identification approach for reluctance synchronous machines (RSMs) in combination with analytical flux linkage prototype functions. Due to the severe magnetic saturation, good machine knowledge is required for high-performance electrical drive systems. The proposed self-identification method injects bipolar voltage pulses to an inverter-fed machine at standstill, without additional test equipment and requirements. Within an extremely short time, nonlinear flux linkages, including the magnetic saturation and cross-coupling effects, can be obtained. Instead of saving the samples as lookup tables (LUTs), they are approximated by analytical flux linkage prototype functions, which are parametrized by few parameters, and continuously differentiable throughout the whole operation range. The effectiveness of the developed self-identification method is experimentally validated for a nonlinear 4.0kW RSM. The results prove (i) the simple and time-saving procedure of the self-identification method, (ii) the high approximation accuracy and (iii) the benefits of the flux linkage prototype functions for real-time applications.

목차

Abstract
I. Introduction
II. Modeling and Parameter Identification
III. Flux Linkage Prototype Function
IV. Experimental Validation
V. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0