메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
송지현 (한동대학교) 김순선 (아주대학교) 한지은 (아주대학교) 조효정 (아주대학교) 정재연 (아주대학교) 홍참길 (한동대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.51 No.7
발행연도
2024.7
수록면
627 - 633 (7page)
DOI
10.5626/JOK.2024.51.7.627

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
만성 B형간염 환자는 적절한 시기에 치료를 받지 못하는 경우 간경변증이나 간암과 같은 합병증으로 진행될 위험이 높다. 이에 따라 여러 B형간염 항바이러스제가 개발되어 있으며, 항바이러스제의 성분에 따라 환자별 반응상 차이가 나타날 수 있어 긍정적인 치료반응을 기대할 수 있는 올바른 약제 선택이 중요하게 여겨진다. 본 연구에는 환자의 혈액 검사 결과, 약물 처방 여부를 나타내는 전자의무기록과 함께 B형간염 항바이러스제의 성분 정보를 함께 학습하여 만성 B형간염 환자의 1년 후 치료반응 예측 성능을 향상시키는 것을 목표로 한다. 보다 효과적인 항바이러스제의 분자 표현을 위하여 고정된 분자 임베딩 및 그래프 신경망 모델을 활용한 종단형(end-to-end) 구조를 통해 생성된 분자 임베딩을 사용하였으며, 기반 모델과의 비교를 통해 약물 분자 임베딩이 성능 향상에 도움을 줄 수 있음을 확인하였다.

목차

요약
Abstract
1. 서론
2. 데이터 및 접근방법
3. 방법
4. 실험 결과 및 분석
5. 결론 및 향후 연구
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0