메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Wandi Yusuf Kurniawan (Telkom University) Putu Harry Gunawan (Telkom University)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.18 No.1
발행연도
2024.3
수록면
1 - 9 (9page)
DOI
10.5626/JCSE.2024.18.1.1

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Autism spectrum disorder profoundly affects early communication and physical skills, emphasizing the need for effective interventions. Approximately one in a hundred children worldwide is affected by autism. The convolutional neural network (CNN), especially VGG19, is the most accurate tool for detecting autism using a facial image dataset. Notably, there are many configurations that can be applied to produce the best accuracy. This study evaluated how facial images can be used to classify autism using VGG19-based deep learning models with different configurations, such as longshort term memory (LSTM) and Dropout layers; adaptive moment estimation (Adam), root mean square propagation (RMSprop), and stochastic gradient descent (SGD) optimizers; and a cosine annealing learning rate scheduler. Results highlighted substantial performance variations across the configurations, with RMSprop+LSTM+Dropout achieving the highest accuracy (75.85%), average precision, non-autistic precision, and average F1-score. Notably, Adam showed the best performance in non-autistic precision (83.09%) and autistic F1-score (76.74%), while Adam+LSTM+Dropout demonstrated superior autistic precision (85.16%) and non-autistic recall (90.82%). Moreover, SGD+Dropout achieved the highest autistic recall (91.84%). Selecting an appropriate configuration is crucial, and further research can help optimize the architecture, activation functions, and preprocessing for enhanced accuracy. High-accuracy models hold promise for aiding autism detection and communication and physical skill development.

목차

Abstract
I. INTRODUCTION
II. METHODOLOGY
III. RESULTS AND DISCUSSION
IV. CONCLUSION
REFERENCES

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0