메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Pedro Fernando Álvarez (Universidad Católica de Cuenca) Sebastian Quevedo (Universidad Católica de Cuenca)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.18 No.2
발행연도
2024.6
수록면
125 - 133 (9page)
DOI
10.5626/JCSE.2024.18.2.125

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Artificial intelligence (AI) has made impressive progress in recent years. One notable development in this technology has been the emergence of large language models (LLMs) that are capable of generating and interpreting natural language data. These models have gained widespread attention for their remarkable text generation capabilities and improved user interface. At present, academic institutions face challenges associated with how to access vast amounts of information in an efficient manner. This problem is compounded by the increasing number of academic documents available, the dispersion of information in different repositories, and the time and resources required to search and filter this information, which represents a significant workload for professors and students. To address the issue, the current paper proposes an AI-powered assistant integrated with LLMs and a software system based on a microservices architecture. This assistant offers clear and contextually relevant answers to help make academic information retrieval processes more efficient. Altogether, this article proposes an AI-powered assistant that covers the integration aspects of both AI and software models. It also uses intelligent assistants to manage academic information, and is intended to serve as a model for future implementations.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. METHODOLOGY
IV. RESULTS AND DISCUSSION
V. CONCLUSION AND FUTURE WORK
REFERENCES

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0