메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Lee, Jiwon (Seoul National University) Lee, Juhyun (Xi’an Jiaotong-Liverpool University) Jang, Seok-Gil Denver (Seoul National University) Tae-Hyoung Tommy (Seoul National University)
저널정보
대한국토·도시계획학회 국토계획 國土計劃 第59卷 第3號(通卷 第277號)
발행연도
2024.6
수록면
5 - 19 (15page)
DOI
10.17208/jkpa.2024.06.59.3.5

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The pandemic has altered our lives, yet its impact is not equal for everyone. Some groups or individuals have experienced more severe effects, thus exacerbating health equity issues and contributing to long-term mental health problems. Specifically, foreign residents may be disproportionately affected by the COVID-19 pandemic compared to non-foreign residents due to the absence of a safety net and limited access to accurate COVID-19 information. While the importance of health equity at the city level has been highlighted, discussions on the differential experience of depression during the pandemic, particularly in Asia, remain sparse. This study explores the diverse factors influencing depression among foreign and non-foreign residents in Seoul, South Korea, based on a social survey of 7,500 residents (2,500 foreign and 5,000 non-foreign). Employing a partial least squares regression model, the findings indicate distinct patterns between the groups. Income-related indicators and the infodemic substantially affected depression in foreign residents, whereas social isolation, induced by the pandemic, impacted non-foreign residents. These disparate results underscore the necessity for tailored policy approaches to enhance health equity, particularly regarding economic support, social interaction, and access to precise information.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Literature Review
Ⅲ. Research Design
Ⅳ. Results
Ⅴ. Discussion and Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-151-24-02-090089020