메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정동혁 (경성대학교) 김태원 (경성대학교) 이승주 (경성대학교) 박민희 (경성대학교) 김혜경 (경성대학교)
저널정보
한국생약학회 생약학회지(Korean Journal of Pharmacognosy) 생약학회지 제55권 제2호
발행연도
2024.6
수록면
102 - 110 (9page)
DOI
10.22889/KJP.2024.55.2.102

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Schisandra chinensis (S. chinensis) contains several compounds that exhibit various physiological activities such as anti-oxidation and anti-inflammation. The major compounds of S. chinensis are lignans such as schisandrol A, schisandrol B, schisandrin A, gomisin N and schisandrin C. In this study, the contents of five lignans from S. chinensis was quantitatively analyzed by using high-performance liquid chromatography (HPLC) to find the optimal extraction method. Additionally, the analysis method was validated and a simultaneous analysis method was established. DPPH and ABTS scavenging assays were performed to evaluate the anti-oxidant effect of S. chinensis extracts and fractions. The results showed that the calibration curves of five lignans exhibited high linearity with a correlation coefficient (R²) of 0.9998. The optimal extraction method for S. chinensis was the reflux extraction method with 60% ethanol at 100℃ and the contents of five lignans were 1.73, 0.28, 0.85, 1.28 and 0.41%. The contents of five lignans in n-hexane fraction was 6.1 to 8.5 times compared with those in the extract prepared by optimal extraction method. The results of anti-oxidation of S. chinensis extracts and fractions showed that the anti-oxidant effect was increased dose-dependently depending on the contents of five lignans. Therefore, these results could be used as basic data for the standardization of anti-oxidant health functional foods, cosmetics and medicines including five lignans, which are the active compounds of S. chinensis.

목차

Abstract
재료 및 방법
결과 및 고찰
결론
인용문헌

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0