메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Taehoon Han (University of Suwon) Jaehoon Koo (Hanyang University)
저널정보
한국에너지기후변화학회 에너지기후변화학회지 에너지기후변화학회지 Vol.19 No.1
발행연도
2024.6
수록면
49 - 60 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Synthesis gas (syngas) co-combustion in spark ignition (SI) engines has been proven to greatly benefit greenhouse gas reduction and combustion quality improvement. There are, however, still differing opinions on the effect of syngas addition on the knocking phenomenon under boosted conditions: Some suggest that syngas reduces knock by inhibiting end-gas auto-ignition, while others claim that syngas increases knock due to the high pressure rise rate caused by the excessive flame speed of hydrogen. Therefore, this study examines the syngas addition effect on knock intensity and unveils the black box relation between combustion processes and knock intensity with syngas using machine learning based surrogate models. A boosted single-cylinder research engine equipped with a syngas injector and a gasoline port injector was utilized to gather the data over a range of boost levels and spark timing, and seven machine learning based surrogate models were trained on the combustion data. The selected regression model predicted knock intensity given an input space comprising engine control factors and calculated combustion phase data. The regression models were auto-tuned to find the best predicting model over 20,000 samples. The results show the trained model can explain knocking intensity over 70%. Syngas addition extends the knock limit in all boost conditions, and the effect is stronger as increasing the intake pressure. In addition, the model showed the initial flame kernel development phase has the strongest relation with knock intensity compared to other combustion phases.

목차

ABSTRACT
1. Introduction
2. Methodology
3. Data Process Detail
4. Results and Discussion
5. Conclusion and Summary
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-151-24-02-090136659