메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kyuseok Kim (Eulji University) Chanrok Park (Eulji University) Youngjin Lee (Gachon University)
저널정보
한국자기학회 Journal of Magnetics Journal of Magnetics Vol.29 No.2
발행연도
2024.6
수록면
237 - 244 (8page)
DOI
10.4283/JMAG.2024.29.2.237

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The heterogeneity of images generated by positron emission tomography (PET)/magnetic resonance (MR) imaging systems significantly compromises diagnostic accuracy in the medical field. This study developed and refined a bias field correction strategy leveraging a gray-level co-occurrence matrix (GLCM) to enhance the uniformity of MR images within a PET/MR fusion imaging framework. We utilized a spherical phantom imbued with solutions of NaCl and NaCl+NiSO₄ for image acquisition, employing T₂-weighted turbo spin echo (TSE) and half-Fourier-acquired single-shot turbo spin echo techniques. The algorithm introduced for uniformity enhancement fine-tunes the contrast and energy metrics of the GLCM to identify an optimal lambda value. The application of this algorithm to MR images resulted in a marked improvement in percentage image uniformity (PIU), displaying superior characteristics relative to the uncorrected images. Specifically, the application of our algorithm to phantom images prepared with NaCl + NiSO₄ and using the T₂-weighted TSE technique yielded an average PIU of 97.72 %. In summary, we modeled a GLCM-based algorithm that can correct uniformity in MR images and confirmed the applicability of the proposed method in PET/MR systems.

목차

1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0