메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이현세 (동국대학교) 김민걸 (동국대학교) 조성인 (동국대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제29권 제3호
발행연도
2024.5
수록면
242 - 251 (10page)
DOI
10.5909/JBE.2024.29.3.242

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
특징 선택은 특징 공학의 한 과정으로 주어진 정형 데이터로부터 유의미한 특징 (feature, column)을 선택하는 것을 목적으로 한다. 딥러닝 기술이 다양한 분야에서 주목할 만한 수행 능력을 보여줌에 따라 특징 선택 분야에서도 딥러닝 기술 기반 연구가 활발히 이루어지고 있다. 본 논문에서는 concrete autoencoder 기반 선택 기법에 주목하였다. Concrete autoencoder란 autoencoder에 concrete random variable을 적용하여 유의미한 특징을 선택하는 기법이다. 하지만 concrete autoencoder 기법은 특징 선택 시 중복을 허용하고, 저차원 벡터 공간 내에서 데이터가 클래스별로 군집화 되지 않는다는 문제가 있다. 따라서 본 논문은 저차원 벡터 공간 내에서 데이터의 특징별 covariance를 고려하는 기법을 제시하고 다양한 데이터를 사용하여 이 기법을 평가한다. 제안하는 방법은 특히 유전적 정보를 담고 있는 바이오 데이터를 사용했을 때 우수한 성능을 보여준다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 배경 지식 및 관련 연구
Ⅲ. 제안하는 방법
Ⅳ. 실험결과
Ⅴ. 결론
참고문헌 (References)

참고문헌 (22)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089810493