메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
남상기 (영남대학교) 정연식 (영남대학교)
저널정보
한국ITS학회 한국ITS학회 논문지 한국ITS학회 논문지 제22권 제6호
발행연도
2023.12
수록면
114 - 123 (10page)
DOI
https://doi.org/10.12815/kits.2023.22.6.114

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
컴퓨터 비전(Computer Vision: CV) 기술 발전으로 폐쇄회로 TV(Closed-Circuit television: CCTV)와 같은 영상 센서로 돌발상황을 검지하고 있다. 그러나 현재 이러한 기술은 대부분고정식 영상 센서를 기반으로 한다. 따라서 고정식 장비의 영상 범위가 닿지 않는 음영지역의돌발상황 검지에는 한계가 존재해왔다. 최근 엣지 컴퓨팅(Edge-computing) 기술의 발전으로 이동식 영상정보의 실시간 분석이 가능해졌다. 본 연구는 차량 내 설치된 이동식 영상 센서(dashboard camera 혹은 dash cam)에 컴퓨터 비전 기술을 도입하여 고속도로에서 실시간으로돌발상황 검지 가능성에 대해 평가하는 것이 목적이다. 이를 위해 한국도로공사 순찰차량에장착된 dash cam에서 수집된 4,388건의 스틸 프레임 데이터 기반으로 학습데이터를 구축하였으며, YOLO(You Only Look Once) 알고리즘을 활용하여 분석하였다. 분석 결과 객체 모두 예측정밀도가 70% 이상으로 나타났고, 교통사고는 약 85%의 정밀도를 보였다. 또한 mAP(mean Average Precision)의 경우 0.769로 나타났고, 객체별 AP(Average Precision)를 보면 교통사고가0.904로 가장 높게 나타났고, 낙하물이 0.629로 가장 낮게 나타났다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

최근 본 자료

전체보기

댓글(0)

0