메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김현중 (단국대학교) 김동민 (단국대학교) 김수현 (단국대학교) 이희윤 (단국대학교)
저널정보
Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Vol.41 No.5
발행연도
2024.5
수록면
355 - 364 (10page)
DOI
10.7736/JKSPE.024.020

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Environmental issues have become a global concern recently. Countries worldwide are making efforts for carbon neutrality. In the automotive industry, focus has shifted from internal combustion engine vehicle to eco-friendly vehicles such as Electric Vehicles (EVs), Hybrid Electric Vehicles (HEVs), and Fuel Cell Electric Vehicles (FCEVs). For driving strategy, research on vehicle driving method that can reduce vehicle energy consumption, called eco-driving, has been actively conducted recently. Conventional cruise mode driving control is not considered an optimal driving strategy for various driving environments. To maximize energy efficiency, this paper conducted research on eco-driving strategy for EVs-based on reinforcement learning. A longitudinal dynamics-based electric vehicle simulator was constructed using MATLAB Simulink with a road slope. Reinforcement learning algorithms, specifically Deep Deterministic Policy Gradient (DDPG) and Deep QNetwork (DQN), were applied to minimize energy consumption of EVs with a road slope. The simulator was trained to maximize rewards and derive an optimal speed profile. In this study, we compared learning results of DDPG and DQN algorithms and confirmed tendencies by parameters in each algorithm. The simulation showed that energy efficiency of EVs was improved compared to that of cruise mode driving.

목차

1. 서론
2. 전기차 시뮬레이션 모델 개발
3. 강화학습 알고리즘
4. 시뮬레이션 결과
5. 결론
REFERENCES

참고문헌 (17)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0