메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이영석 (청운대학교 인천캠퍼스)
저널정보
한국정보전자통신기술학회 한국정보전자통신기술학회 논문지 한국정보전자통신기술학회 논문지 제17권 제2호
발행연도
2024.4
수록면
113 - 120 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
개체군 희소 지표는 인공 신경망을 구성하고 있는 내부 레이어의 동작을 뉴런의 관점에서 관찰할 수 있기 때문에 블랙박스로 불리는 인공 신경망 내부의 동작을 설명하기 위하여 활용될 수 있다. 최근의 연구에서는 개체군 희소 지표를 두 종류의 컨벌루션 신경망 모델 분석에 적용하여, 레이어의 층이 깊어질수록 지표 값이 비례하여 증가하는 것이 관찰되었음을 보고하였다. 또한, 영상 분류를 위한 컨벌루션 신경망 모델에서 개체군 희소성 지표와 성능이 양의 상관성을 보인다는 연구도 있다. 본 연구에서는 적대적 예제가 컨벌루션 신경망에 적용되었을 때 신경망 내부에서 어떠한 동작이 수행되는지에 대하여 관찰하였다. 이를 위하여 적대적 예제를 입력으로 하는 컨벌루션 신경망의 개체군 희소 지표를 구한 다음, 컨벌루션 신경망의 성능과의 상관성을 비교하였다. 실험의 결과로부터 사전에 5%의 정확도를 갖도록 변형된 적대적 예제들에 대하여 온건한 데이터를 적용한 경우와 유사한 패턴의 양의 상관성을 갖는 것을 확인할 수 있었다. 이 실험결과는 적대적 예제와 온건한 데이터에 대한 각각의 개체군 희소성 지표 값들이 거시적인 관점에서 차이가 없다는 것을 의미하며 적대적 예제가 뉴런의 활성화 측면에서부터 적대적으로 동작한다는 것을 의미한다.

목차

요약
Abstract
1. 서론
2. 관련 연구들
3. 실험 및 결과 고찰
4. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0