메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
배기연 (성신여자대학교) 알라오 혼낭 (플라잎) 김태성 (선문학교) 이규중 (성신여자대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제27권 제4호
발행연도
2024.4
수록면
482 - 489 (8page)
DOI
10.9717/kmms.2024.27.4.482

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, with the development of artificial neural networks, deep convolutional neural network (CNN) has been successfully introduced in the single image super-resolution (SISR) field. Among several CNN-based image restoration methods, area-specific convolutional neural network (ASCNN) is proposed based on the observation that low-frequency pixel areas have relatively less influence on image restoration quality than high-frequency pixel areas. After ASCNN analyzes the spatial frequencies of an image, it applies a relatively simpler convolution operation to the low-frequency region than to the high-frequency region. However, this method cannot perform optimized operations on each pixel. In this paper, multi-path method is proposed which further subdivides the image area into more than two areas. By performing operations only as needed according to the frequency level of each pixel, FLOPs (floating-point operations) can be efficiently reduced even with a slight decrease in performance. According to experimental results, instead of a decrease of approximately 0.43% in PSNR (peak-topeak signal ratio), FLOPs is reduced by up to 42%.

목차

ABSTRACT
1. 서론
2. Area-Specific Convolutional Neural Networks
3. 제안한 방법
4. 실험 결과 및 고찰
5. 결론
REFERENCE

참고문헌 (14)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089665907