메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최형준 (전북대학교) 나승훈 (전북대학교) 홍범석 (LG U+) 한영섭 (LG U+) 전병기 (LG U+)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.51 No.4
발행연도
2024.4
수록면
326 - 332 (7page)
DOI
10.5626/JOK.2024.51.4.326

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
문서 기반 응답 생성은 소비자 상담이나 보험 설계와 같이 정확한 사실에 기반한 근거가 되는 문서를 검색한 후, 해당 문서를 통해 대화 응답을 생성하는 작업을 의미한다. 이번 연구에서는 응답 생성 모델이 입력된 문서로부터 답변 생성에 필요한 부분을 찾아내어 반영하는 능력을 향상시키기 위해 Supervised Cross-attention을 제시했다. 이는 디코더의 Cross-attention에 대해 Attention Supervision을 적용하는 것으로, 입력 문서 중 실제 답변 생성에 포함되어야 하는 정보인 레퍼런스에 해당하는 부분에 Cross-attention 가중치가 집중되도록 지도학습 과정을 추가하는 것이다. 이 방법과 추가적인 성능 향상 방법을 도입한 결과 기존 SOTA 대비 F1 지표에서 1.13의 성능 향상을 확인하였고, Supervised Cross-attention을 통해 0.25의 성능 향상이 있었음을 확인했다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 데이터 표기
4. 모델 구성
5. Supervised Cross-Attention
6. 실험
7. 결론
References

참고문헌 (0)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0