메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
옥승은 (한양대학교) 변준영 (한양대학교) 김남형 (한양대학교) 송재욱 (한양대학교)
저널정보
한국경영과학회 경영과학 經營科學 第41卷 第1號
발행연도
2024.3
수록면
51 - 70 (20page)
DOI
10.7737/KMSR.2024.41.1.051

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study presents a model for estimating healthy life expectancy in Gyeongsangbuk-do at the city, county, and district level using machine learning. Quality-adjusted life expectancy (QALE) was calculated at each level using Graville correction and life tables. Next, 43 factors related to healthy life expectancy, including demographic and health care policy variables, were obtained from national health data. Machine learning was used to estimate healthy life expectancy. It was confirmed that LightGBM and artificial neural network had superior estimation performance compared to the multiple linear regression model commonly used in healthcare and medical science. Using the artificial neural network model with the best performance, we conducted additional factor analysis using Shapley additive explanations. Our findings confirmed that the depression experience rate and perceived stress rate were the most significant factors affecting healthy life expectancy in all cities, counties, and districts in Gyeongsangbuk-do. However, the sensitivity analysis revealed that the ranking of factors causing an increase or decrease in healthy life expectancy varied across cities, counties, and districts. Thus, it was confirmed that tailored policies, accounting for regional circumstances, are necessary to promote health and enhance equity.

목차

Abstract
1. 서론
2. 선행 연구
3. 방법론
4. 연구 결과
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0