메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최건호 (부산대학교) 주재한 (부산대학교) 김석찬 (부산대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제27권 제3호
발행연도
2024.3
수록면
388 - 399 (12page)
DOI
10.9717/kmms.2024.27.3.388

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Fast and accurate pupil tracking, even in environments with limited computing resources, is critical for applications such as eye tracking and driver drowsiness warning systems. This paper proposes BF-YOLOv3-tiny for fast and accurate pupil tracking. Key improvements include: A bi-directional fusion method was applied to interconnect low-resolution and high-resolution feature maps, and anchors boxes were selected by considering distribution changes due to data augmentation during training process. In addition, a signal processing technique to remove grid sensitivity and an IoU-based loss function were adopted when model predicts the bounding boxes. Data provided by Department of Ophthalmology of Pusan National University hospital was used to evaluate the proposed model, and the results were compared and analyzed through comparative experiments with five lightweight networks. The proposed model shows performance up to 98.0 AP 50, 78.8 AP 75, and 44.6 AP T , outperforming compared to existing YOLOv3-tiny and other lightweight networks. Lastly, as a result of implementing the model with the best performance on NVIDIA Jetson Nano, it achieved up to 100.0 AP 50 and 26.2 FPS, demonstrating its feasibility and an accurate and real-time pupil tracking system even in an environment with limited computing resources.

목차

ABSTRACT
1. 서론
2. 사용한 딥러닝 모델과 제안하는 방법
3. 실험 설정
4. 실험 결과
5. 결론
REFERENCE

참고문헌 (10)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089574634