메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김지현 (경희대학교) 이흠철 (경희대학교) 장동수 (경희대학교) 김재경 (경희대학교)
저널정보
한국경영과학회 한국경영과학회지 韓國經營科學會誌 第49卷 第1號
발행연도
2024.2
수록면
1 - 17 (17page)
DOI
10.7737/JKORMS.2024.49.1.001

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
With the development of the e-commerce market, customers have faced an information overload problem. Therefore, the importance of personalized recommendation becomes more important because it helps to reduce the cost of decision- making. Recently, many studies on online review-based recommender systems have been actively conducted, extracting consumers’ preference information from reviews. Specifically, most studies only use polarity factors of reviews as consumers’ preference information. However, besides polarity factors, various emotions still exist in the review that can be seen as essential consumer features. Therefore, this study proposed a novel recommendation model that applies multidimensional emotional factors of reviews to address such a limitation. For this, this study applies Multi-layer Perceptron to learn nonlinear consumer-product interaction. Then, this study extracts eight emotional factors from online reviews by combining the NRC dictionary and the LIWC program. Finally, this study predicts consumer preference based on the consumer-product interaction vector and eight emotional factors. To evaluate recommendation performance, this study used the movie review dataset collected from Amazon.com, which is one of the most representative experience goods. The experimental results showed the proposed model outperforms the benchmark models. The core reason is that the proposed model effectively used consumer features with eight emotional factors in reviews. Therefore, the proposed model in this study can provide an enhanced recommendation service by using online reviews.

목차

Abstract
1. 서론
2. 관련 연구
3. 제안 방법론
4. 실험
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0