메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임길환 (다온) 김성렬 (금오공과대학교)
저널정보
한국정보기술학회 한국정보기술학회논문지 한국정보기술학회논문지 제22권 제3호(JKIIT, Vol.22, No.3)
발행연도
2024.3
수록면
109 - 118 (10page)
DOI
10.14801/jkiit.2024.22.3.109

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 화재감지기에 사용될 수 있는 다양한 센서 조합이 화재감지 성능에 미치는 영향에 분석하고자 한다. 화재/비화재 분류기 생성을 위해 화재와 일상 환경을 모사한 실제 테스트베드에서 다양한 센서를 통해 데이터를 수집하였으며 이를 이용하여 로지스틱 분류(Logistic regression) 및 K-최근접 이웃(K-Nearest neighbor), 나이브 베이즈(Naive bayes), 서포트 벡터 머신(Support vector machine), 랜덤 포레스트(Random forest) 모델을 학습하였다. 성능평가를 통해 CO, 연기, 온도 센서 및 이들의 조합이 화재감지에 우수함을 확인하였다. 또한, 주어진 데이터 세트에서 K-최근접 이웃과 랜덤 포레스트 알고리즘이 다른 머신러닝 알고리즘에 비해 높은 정확도를 보였다.

목차

요약
Abstract
References
Ⅰ. 서론
Ⅲ. 데이터 수집
Ⅳ. 데이터 분석
Ⅴ. 모델 분석
Ⅵ. 결론 및 향후 과제
References

참고문헌 (0)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0