메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김정수 (한국건설기술연구원) 박상미 (한국건설기술연구원) 홍창희 (한국건설기술연구원)
저널정보
한국재난정보학회 한국재난정보학회 논문집 한국재난정보학회 논문집 제19권 제3호
발행연도
2023.9
수록면
498 - 509 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
연구목적: 본 논문은 CCTV 영상을 활용한 딥러닝 객체 인식 기술을 적용해 지하공동구 내 쓰러진 관리인력의 검출 방법을 제시하고, 제안 방법의 관리인력 모니터링 적용성을 평가한다. 연구방법: 사람 검출 목적으로 사전 훈련된 YOLOv5와 OpenPose 모델의 추론 결과로부터 쓰러짐을 판별할 수 있는 규칙을 제안하고, 각 모델의 결과를 통합해 지하공동구 내 작업자 쓰러짐 검출에 적용하였다. 연구결과: 제안된 모델로 작업인력의 감지 및 쓰러짐을 판단할 수 있었으나, CCTV와 작업자 간격 및 작업자가 쓰러진 방향에 의존해 검출성능이 영향을 받았다. 또한 지하공동구 작업자에 대해 YOLOv5 기반 쓰러짐 판별 규칙 적용 모델이 거리 및 쓰러짐 방향 의존성이 낮아 OpenPose 기반 모델에 비해 우수한 성능을 보였다. 그 결과 통합된 이중 딥러닝 모델의 쓰러짐 검출 결과는 YOLOv5 결과에 종속되었다. 결론: 제안모델을 통해 지하공동구 작업자의 이상상황 검출이 가능함을 보였으나, 개별 딥러닝 모델별 사람 감지 성능 차이로 인해 YOLOv5 기반 모델 대비 통합 모델의 쓰러짐 검출 성능 개선은 미미하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0