메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Beomseo Choi (Daejeon University) Hongjun Kim (Daejeon University) Seung Hyun Jeon (Daejeon University)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제49권 제3호
발행연도
2024.3
수록면
346 - 355 (10page)
DOI
10.7840/kics.2024.49.3.346

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Chronic Obstructive Pulmonary Disease (COPD) is a serious lung disease that makes breathing difficult and cannot be easily detected. Even though early diagnosis technology for COPD using machine learning has been developed, Pulmonary Function Test (PFT) data-based time series prediction studies are still lacking. We use PFT data with insufficient measurement intervals, propose a Long Short-Term Memory (LSTM) to predict PFT values for the future 1Q from the past 2Q, and classify whether COPD occurs or not. The data were interpolated to resolve the imbalanced time period. To confirm the validity of the augmented data, Multivariate Analysis of Variance (MANOVA) was performed, and through the rigorous MANOVA, we proved that there was no significant difference between the original and interpolated data. Mean Absolute Percentage Error (MAPE), recalls, and F1 scores, which are the harmonic mean of precision and recall for classification, were measured for two test scenarios: only the original data and the augmented data. Finally, we found the interpolated data decreased MAPE by almost 7%, however, improved recall and F1 score by almost 22% and 12% for obstructive pulmonary disease, compared with the original data. Besides, we can predict COPD within 3 months, irrelevant to smokers and non-smokers.

목차

ABSTRACT
Ⅰ. Introduction
Ⅱ. Related Works
Ⅲ. System Model
Ⅳ. Experimental Results
Ⅴ. Conclusion
References

참고문헌 (14)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089490982