메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최재훈 (Hoseo University) 김동진 (Hoseo University) 김정주 (Hoseo University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제73권 제3호
발행연도
2024.3
수록면
618 - 624 (7page)
DOI
10.5370/KIEE.2024.73.3.618

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes a system that utilizes vision sensor and machine learning to predict pedestrian trajectories, aiming to reduce the high malfunction rate and safety incidents associated with existing infrared sensor-based automatic doors. The system employs vision sensor and machine learning to gather pedestrian location information, which is then input into a polynominal regression-based pedestrian trajectory prediction algorithm. The predicted pedestrian trajectory data is applied to the automatic door opening or closing determination algorithm and the and the automatic door opening or closing is determined by the pedestrian trajectory pattern. To compare the accuracy of the automatic door system and the existing automatic door system proposed in this paper, we conducted an experiment to find out accuracy by classifying three walking trajectory patterns based on malfunctions occurring in infrared sensor-based automatic doors. The experimental results show that the automatic door system proposed in this paper accurately predicts the trajectory of pedestrians and effectively controls the automatic door opening or closing. This paper explores potential applications in smart city development, energy conservation, and enhancing pedestrian convenience. Furthermore, the system combining vision sensor, machine learning, and polynominal regression for trajectory prediction and door operation decision-making can significantly contribute to the advancement of other automation technologies.

목차

Abstract
1. 서론
2. 본론
3. 실험
4. 결론
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089461829