메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
D. Saisanthiya (SRM Institute of Science and Technology) P. Supraja (SRM Institute of Science and Technology)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.13 No.1
발행연도
2024.2
수록면
61 - 68 (8page)
DOI
10.5573/IEIESPC.2024.13.1.61

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the context of artificial intelligence technology, an emotion recognition (ER) has numerous roles in human lives. On the other hand, the emotion recognition techniques most currently used perform poorly in recognizing emotions, which limits their wide spread use in practical applications. A Collaborative Multimodal Emotion Recognition through Improved Federated Learning Generative Adversarial Network (MER-IFLGAN) for facial expressions and electro encephalogram (EEG) signals was proposed to reduce this issue. Multi-resolution binarized image feature extraction (MBIFE) was initially used for facial expression feature extraction. The EEG features were extracted using the Dwarf Mongoose Optimization (DMO) algorithm. Finally, IFLGAN completes the Emotion recognition task. The proposed technique was simulated in MATLAB. The proposed technique achieved 25.45% and 19.71% higher accuracy and a 32.01% and 39.11% shorter average processing time compared to the existing models, like EEG based Cross-subject and Cross-modal Model (CSCM) for Multimodal Emotion Recognition (MERCSCM) and Long-Short Term Memory Model (LSTM) for EEG Emotion Recognition (MERLSTM), respectively. The experimental results of the proposed model shows that complementing EEG signals with the features of facial expression could identify four types of emotions: happy, sad, fear, and neutral. Further more, the IFLGAN classifier can enhance the capacity of multimodal emotion recognition.

목차

Abstract
1. Introduction
2. Literature Survey
3. Proposed Methodology
4. Result and Discussion
5. Conclusion
References

참고문헌 (28)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0