메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이경재 (건국대학교) 임현우 (건국대학교)
저널정보
한국태양에너지학회 한국태양에너지학회 논문집 한국태양에너지학회 논문집 제44권 제1호
발행연도
2024.2
수록면
59 - 75 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Handling missing values during data analysis is an important issue that directly affects the prediction performance of models and research results. However, research on the differences between the dimensionality reduction rate and model prediction performance is still lacking for building energy-related data. Therefore, this study compared the dimensionality reduction rate and model prediction performance by handling missing values in weather information datasets, which is related to building energy. The missing value-handling methods were divided into removal, k-nearest neighbors (KNN) imputation, and no handling. Dimensionality reduction methods were classified based on principal component analysis and feature selection using the model. Further, the eXtreme Gradient Boosting (XGBoost) algorithm, a gradient boosting method with its own missing data handling capabilities, was used. Consequently, few principal components were required to explain 95% of the variance in the raw data when the missing values were removed than when they were replaced with KNN. Moreover, the dimensionality reduction methods of model building and feature selection outperformed principal component analysis in terms of dimensionality reduction rate and model predictive accuracy. Particularly, the XGBoost model without missing values had the highest accuracy, suggesting that the missing-value handling method of XGBoost may be superior to conventional missing-value handling methods. These results may have important implications for selecting imputation methods in building energy data analysis, considering the effort and cost of missing value handling, and can significantly reduce the cost and effort of data preprocessing.

목차

Abstract
1. 서론
2. 방법론
3. 연구 결과
4. 차원축소 방식에 따른 모델 정확도 비교
5. 결론
REFERENCES

참고문헌 (19)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089438866