메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
고동률 (연세대학교) 이재윤 (솔트룩스) 이다희 (솔트룩스) 손유리 (솔트룩스) 김상민 (한화시스템  ) 장재은 (한화시스템) 김문형 (한화시스템) 박상현 (연세대학교) 김재은 (솔트룩스)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.51 No.2
발행연도
2024.2
수록면
165 - 172 (8page)
DOI
10.5626/JOK.2024.51.2.165

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
의도 탐지는 대화시스템에서 사용자의 발화 의도를 파악하는 중요한 과제이다. 또한 사건 탐지는 뉴스 기사, 소셜 미디어 게시물, 보고서 등의 수많은 텍스트에 특정 시간, 장소, 사람 등 육하원칙이 포함된 문장에서 실제 사건을 식별하는 중요한 과제이다. 언어모델의 발전에 따라, 언어모델을 활용한 의도와 사건 탐지에 대한 연구가 활발하게 진행되고 있으며, 오픈 도메인(Open-domain)에서 활용하기 위해 언어모델로 임베딩(Embedding)한 벡터 값 간의 유사도를 활용하여 의도 및 사건을 탐지하는 방법이 사용되고 있다. 하지만 일반적인 임베딩 모델을 활용한 문장 유사도 분석은 문장 내의 핵심어 정보에 치우친 분석을 하기 때문에, 문장 전체의 의미 파악이 필요한 의도 및 사건 탐지에 적합하지 않다. 본 논문에서는 문장의 주요핵심어로 사용되는 개체보다 문장 전체의 의미를 결정하는 서술어를 중심으로 임베딩 하는 것이 중요하다는 것에 착안하여, 개체명 인식(NER)과 개체관계(RE) 데이터셋을 활용하여, 개체 정보보다 서술어를 집중하여 임베딩 할 수 있는 대조학습 학습 데이터셋을 구축하고, 기존 문장 임베딩 모델에 적응학습을 하는 방안을 제안한다. 또한 제안하는 모델인 SBERT-PRO (PRedicate Oriented)가 공개된 문장 임베딩 모델보다 우수한 성능을 보이는 것을 입증한다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안 방안
4. 실험 및 평가
5. 결론 및 향후 연구
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089391439