메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍수민 (한국건설기술연구원) 조경주 (한국건설기술연구원) 강태욱 (한국건설기술연구원)
저널정보
한국건축친환경설비학회 한국건축친환경설비학회 논문집 한국건축친환경설비학회 논문집 제17권 제6호
발행연도
2023.12
수록면
387 - 399 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper focuses on developing and validating a CO2 concentration prediction model to optimally control and operate mechanical ventilation systems in residential buildings. Various datasets and models were utilized throughout the research process. Initially, CO2 concentration was predicted based on a basic dataset comprising the day of the week, time, temperature, and indoor CO2 levels. Subsequently, a more comprehensive dataset, incorporating ventilation system operation counts and natural ventilation presence, was employed for predictions. Machine learning and deep learning models such as ANN, DNN, LSTM, KNN, and LGBM were trained using these datasets, and their predictive performance was compared across different areas of the residence, namely bedrooms, living rooms, and corridors. The findings demonstrate that even using the basic dataset alone, it is possible to predict CO2 levels in residential buildings with a high degree of confidence. These results are expected to contribute to the development of future algorithms for operating next-generation mechanical ventilation systems that aim to minimize energy consumption while maintaining a clean indoor environment. This paper is anticipated to increase interest and understanding in environmentally conscious indoor environmental control systems and offer essential research insights for the advancement of building systems and environmental technology in the future.

목차

ABSTRACT
서론
연구의 범위 및 방법
데이터의 수집
예측 모델 분석
결론
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089251396