메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최승범 (한국원자력연구원) 박경우 (한국원자력연구원) 이창수 (한국원자력연구원)
저널정보
한국암반공학회 터널과 지하공간 터널과 지하공간 제33권 제6호(통권 제167호)
발행연도
2023.12
수록면
561 - 573 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
한국원자력연구원은 심부 암반의 수리/지화학 특성 분석을 위해 KURT (KAERI Underground Research Tunnel)를 건설하였고, 다수의 조사용 시추공을 시추하여 각종 시험을 수행 중이다. 시추공 조사에서 목적에 적합한 조사 구간 선정은 매우 중요하며 수리 유동 파악 및 지하수 채수가 목적인 경우, 유량이 풍부한 구간이 조사 목적에 부합한다. 본 연구에서는 이러한 구간을 수리 이상점으로 정의했으며, 심도 1 km 수준의 시추공 물리검층 자료(온도, 전기전도도)를 활용하여 이를 탐지하고자 하였다. 체계적이고 효율적인 이상점 탐지를 위해 기계학습 알고리즘 중 DBSCAN, OCSVM, kNN, isolation forest을 적용하고 그 적용성을 파악하였다. 데이터 전처리와 알고리즘 최적화를 수행했으며, 그 결과 네 가지 알고리즘은 각각 55, 12, 52, 68개의 수리 이상점을 탐지하였다. 본 논문을 통해 기계학습 알고리즘의 활용 가능성을 확인했으나, 학습에 활용된 입력자료가 제한적이었기 때문에, 향후 추가적인 검증과 보완이 바람직한 것으로 판단된다.

목차

ABSTRACT
초록
1. 서론
2. 배경 이론
3. 수리 이상점 탐지 결과
4. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0