메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박예지 (가톨릭관동대학교) 최은미 (가톨릭관동대학교) 방소현 (가톨릭관동대학교) 정진형 (가톨릭관동대학교)
저널정보
한국정보전자통신기술학회 한국정보전자통신기술학회 논문지 한국정보전자통신기술학회 논문지 제16권 제6호
발행연도
2023.12
수록면
526 - 532 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
낙상사고는 세계적으로 매년 42만 건 이상 발생하는 치명적인 사고이다. 따라서, 낙상 환자를 연구하고자 낙상환자의 손상외인코드와 주진단 S코드의 연관성을 찾고, 낙상 환자의 주진단 S코드 데이터를 가지고 손상외인코드를 예측할 수 있는 예측모델을 개발하였다. 본 연구에서는 강원특별자치도 강릉시에 있는 A 기관의 2020~2021년 2년간의 데이터를 받아 낙상에 관련된 손상외인코드 W00~W19까지 데이터만 추출하고, 낙상 손상외인코드 중 예측모형을 개발할 정도의 주진단 S코드를 가지고 있는 W01, W10, W13, W18 데이터를 가지고 예측모형 개발하였다. 데이터 중 80%는 훈련용 데이터, 20%는 테스트용 데이터로 분류하였다. 모형 개발은 MLP(Multi-Layer Perceptron)을 이용하여 6개의 변수(성별, 나이, 주진단S코드, 수술유무, 입원유무, 음주유무)를 입력층에 64개의 노드를 가진 2개의 은닉층, 출력층은 softmax 활성화 함수를 이용하여 손상외인코드 W01, W10, W13, W18 총 4개의 노드를 가진 출력층으로 구성하여 개발하였다. 학습결과 첫 번째 학습했을 때 31.2%의 정확도를 가졌지만, 30번째는 87.5%의 정확도를 나타냈고 이를 통해 낙상환자의 낙상외인코드와 주진단 S코드의 연관성을 확인할 수 있었다.

목차

요약
Abstract
1. 서론
2. 연구방법
3. 연구결과
4. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0