메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Pushpa Balakrishnan (Annamalai University) B. Baskaran (Annamalai University) S. Vivekanan (RPS Hospitals) P. Gokul (Saveetha School of Engineering)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.12 No.6
발행연도
2023.12
수록면
502 - 510 (9page)
DOI
10.5573/IEIESPC.2023.12.6.502

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Binarized spiking neural networks optimized with a color harmony algorithm for liver cancer classification (BSNN-CHA-LCC) are proposed to classify liver cancer as normal and abnormal. Initially, fusion of an MRI dataset and CT-scan datasets of a liver cancer dataset were taken, and the input images were given to CWF-based preprocessing for removing noise and increasing the quality of input computed tomography (CT) and magnetic resonance imaging (MRI). The preprocessed images of CT and MRI are given to improve the non-sub sampled Shearlet transform (INSST) method-based feature extraction for extracting features. The extracted features were given BSNN to classify liver cancer as normal and abnormal. The proposed method was implemented, and the efficiency of the proposed BSNN-CHA-LCC method was evaluated under performance metrics, such as precision, sensitivity, F-scores, specificity, accuracy, error rate, and computational time. The proposed technique achieved23.03%, 11.56%, and 21.22% higher accuracy and 36.12%, 15.23%, and 27.11% lower error rates than the existing models, such as hybrid-feature analysis depending on machine-learning for liver cancer categorization utilizing fused images (MLP-LCC), Deep learning-based classification of liver cancer histopathology images utilizing only global labels (mask-RCNN-LCC), and deep learning based liver cancer identification utilizing watershed transform and Gaussian mixture method (DNN-GMM-LCC), respectively.

목차

Abstract
1. Introduction
2. Literature Survey
3. Proposed Methodology
4. Results and Discussion
5. Conclusion
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0