메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이미선 (Sejong University) 안현철 (Kookmin University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제28권 제12호(통권 제237호)
발행연도
2023.12
수록면
259 - 266 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 속성기반 오피니언 마이닝(ABOM)을 적용한 협업 필터링의 정확도 성능을 개선할 수 있는 알고리즘을 제안한다. 실험을 위해 국내 스마트폰 사용자의 스마트폰 앱에 대한 총 1,227건의 온라인 소비자 리뷰 데이터가 분석에 사용되었다. KKMA(꼬꼬마)분석기를 이용하여 형태소 분석 및 KOSAC를 사용하여 감성어 분석 후 LDA 토픽 모델링을 사용하여 속성 추출한 가중치 값을 부여한 리뷰별로 토픽 모델링 결과를 이용하여 협업필터링의 평점과 감성스코어의 평점을 합산한 평균값 정확도 오차를 계산한 통계모형 성능 평가인 MAE, MAPE, RMSE를 사용하였다. 실험을 통해 추천 알고리즘 중 전통적인 협업필터링과 LDA 속성 추출과 감성분석을 결합한 속성기반 오피니언 마이닝(Aspect-Based Opinion Mining, ABOM) 기법을 결합하여 온라인 고객의 앱 평점(APP_Score) 대한 정확도를 예측하였다. 분석 결과 전통적인 협업필터링을 구현한 평점의 정확도 보다 속성기반 오피니언 마이닝 CF를 적용한 평점의 예측 정확도가 더 우수한 것으로 나타났다.

목차

Abstract
요약
I. Introduction
II. Theoretical background
III. Proposal Algorithm
IV. Experiment
V. Conclusion
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0