메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Sevara Amirullaeva (Seoul National University of Science and Technology) Ji-Hyeong Han (Seoul National University of Science and Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
1,874 - 1,878 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The facial age estimation is an important task for efficient human-robot interaction. A supervised similarity learning has not been widely adopted to a facial age estimation and is still a challenging task. In this paper, we propose a multi-scale similarity learning model which is able to jointly learn similarities between multi-level age features extracted from three different images: an input, a sample with same age named positive and a sample with contrary age named negative. The idea behind using the multi-level feature extraction is to make our feature similarity learning model robust to scale invariance of individual images. As is known, the quality of images in datasets for age estimation vary considerably and deep-learning based networks are often sensitive to image quality and resolution. On that account, we employ a multi-scale feature extraction structure to our model and prove its ability to extract reliable features for a similarity learning. Experimental results show that the proposed approach outperforms previous research and provides a new state-of-the-art age estimation accuracy of UTKFace and CACD benchmark datasets for age estimation.

목차

Abstract
1. INTRODUCTION
2. RELATED WORK
3. METHODOLOGY
4. EXPERIMENTAL RESULTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088266615