메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Sumaira Manzoor (Creative Algorithms and Sensor Evolution Laboratory) Eun-jin Kim (Sungkyunkwan University) Sang-Hyeon Bae (Sungkyunkwan University) Tae-Yong Kuc (Creative Algorithms and Sensor Evolution Laboratory)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
1,721 - 1,726 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Mobile robots are proliferating at a significant pace and the continuous interaction between humans and robots opens the doors to facilitate our daily life activities. Following the target person with the robot is an important human-robot interaction (HRI) task that leads to its applications in industrial, domestic, and medical assistant robots. To implement the robotic tasks, traditional solutions rely on cloud servers that cause significant communication overhead due to data offloading. In our work, we overcome this potential issue of cloud-based solutions, by implementing the task of a hum-following robot (HFR) at the Nvidia Jetson Xavier NX edge platform. To perform the HFR task, typical approaches track the target person only from behind. While, our work allows the robot to track the person from behind, front, and side views (left & right). In this article, we combine the latest advances of deep learning and metric learning by presenting two trackers: Single Person Head Detection-based Tracking (SPHDT) model and Single Person full-Body Detection-based Tracking (SPBDT) model. For both models, we leverage a deep learning-based single object detector called MobileNetSSD with a metric learning-based re-identification model, DaSiamRPN. We perform the qualitative analysis considering six major environmental factors: pose change, illumination variations, partial occlusion, full occlusion, wall corner, and different viewing angles. Based on the better performance of SPBDT, compared to SPHDT in the experimental results, we select SPBDT model for the robot to track the target. We also use this vision model to provide the relative position, location, distance, and angle of the target person to control the robot’s movement for performing the human-following task.

목차

Abstract
1. INTRODUCTION
2. RELATEDWORK
3. METHODOLOGY
4. EXPERIMENTAL SETUP
5. RESULTS AND DISCUSSION
6. USE CASE
7. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088266375