메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이권호 (국립강릉원주대학교)
저널정보
한국대기환경학회 한국대기환경학회지(국문) 한국대기환경학회지 제39권 제6호
발행연도
2023.12
수록면
968 - 984 (17page)
DOI
10.5572/KOSAE.2023.39.6.968

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
This study reports the results of a statistical analysis of day and night aerosol optical properties measured from the Cimel CE318-T sun-lunar-photometer operated at Gangneung-Wonju National University (37.771°N, 128.867°E) from January 2015 to December 2022. Aerosol observations during the day and night are an important means of monitoring aerosols during the diurnal cycle, and we aimed to use these observations to the study of regional aerosol properties. In addition, since long-term observations can be used to predict current and future variations through machine learning-based time series analysis technique, the optimal modeling technique was determined and future predictions were presented. Statistical analysis of the day and night observations showed that daily and seasonal aerosol optical depth at 500 nm wavelength (AOD<SUB>500</SUB>) and angstrom exponent at 440 nm and 675 nm wavelengths (AE<SUB>440_675</SUB>) are characterized by similar patterns, respectively. More specifically, the AOD<SUB>500</SUB> and AE<SUB>440_675</SUB> datasets observed at night range approximately 5.7% and 1.9% higher than the observed during day. Additionally, for modeling time series analysis with long-term aerosol observations, the computation of auto regressive moving average models among machine learning techniques was applied and evaluated by analyzing the differences in the results. Pairwise comparisons, correlation coefficients, root mean square errors, and mean bias also supported the reliability of the data. The results also showed that the Seasonal AutoRegressive Integrated Moving Average with Exogenous Variables (SARIMAX) model was the most accurate, and future predictions were compared.

목차

Abstract
1. 서론
2. 자료 및 방법
3. 결과 및 고찰
4. 요약 및 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0