메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김혜주 (상명대학교) 나재호 (상명대학교)
저널정보
한국컴퓨터그래픽스학회 컴퓨터그래픽스학회논문지 컴퓨터그래픽스학회논문지 제29권 제5호
발행연도
2023.12
수록면
31 - 40 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
디스플레이의 해상도의 증가에 따라 고해상도 텍스처 맵을 내장한 앱들도 함께 증가하는 추세에 있다. 최근 딥러닝 기반 이미지 초해상도 기법들의 발전은 이러한 고해상도 텍스처 생성 작업을 자동화할 수 있는 가능성을 만들고 있다. 하지만 이러한 적용 사례에 대해 심층적으로 분석한 연구는 아직 부족한 상태이다. 그래서 본 논문에서는 최신 초해상도 기법들 중 BSRGAN, Real-ESRGAN, SwinIR(classical 및 real-world image SR)을 택하여 텍스처 맵의 업스케일링(upscaling)에 적용한 후 그 결과를 정량적, 정성적으로 비교, 분석하였다. 실험 결과 업스케일링 후 나타나는 다양한 아티팩트(artifact)들을 발견할 수 있었으며, 이를 통해 기존 초해상도 기법들을 텍스처 맵 업스케일링에 곧바로 적용하기에는 일부 미흡한 부분이 존재한다는 점을 확인하였다.

목차

요약
Abstract
1. 서론
2. 기존연구
3. 실험 및 분석
4. 결론 및 향후 연구
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088486279