It's been more than 90 days since you changed your password. Please change your password to protect your privacy
When you visit DBpia through the library, login to SNS is restricted.
If you visit through the library, the URL will be different and you will not be able to log in to SNS due to kakao/google/naver policy. If you want to use your SNS account, please visit DBpia directly and log in.
Using XAI to Select Pollutants of Total Pollutant Load management System (TPLMS) in Special Management coastal Zone (SMCZ) and Derive Marine Pollution Control Measures
XAI를 활용한 특별관리해역의 연안오염총량관리제 오염물질 대상항목 선정 및 해양오염 관리 방안 도출
DBpia Top 10%Percentile based on 2-year usage in the same subject category.
📌
Topic
📖
Background
🔬
Method
🏆
Result
Using XAI to Select Pollutants of Total Pollutant Load management System (TPLMS) in Special Management coastal Zone (SMCZ) and Derive Marine Pollution Control Measures
The Ministry of Oceans and Fisheries reports on the status of special management coastal zone every year. Currently, Korea periodically utilizes the data from the marine environmental measurement network to identify the extent of marine pollution to establish and evaluate the total pollutant load management system for special management coastal zone. However, as a result of the operation of the marine environmental measurement network in 2016 by the Ministry of Oceans and Fisheries, most of the waters maintain relatively clean water quality with a water quality index (WQI) of 2 or higher. However, among the special management coastal zone, some peaks that are directly affected by the influx of land-based pollutants, such as the coast of Ulsan, the inner part of Masan Bay, the inner part of Sihwa Lake, the waters of the Nakdong River estuary, and the coast of Mokpo at the mouth of Yeongsan River, partially show results below WQI 4, indicating that measures to improve water quality are needed. This study identifies the current status of marine pollution sources in special management coastal zone through XAI (explainable artificial intelligence) analysis using data on special management coastal zone from the Marine Environmental Measurement Network, identifies the main pollution sources, and proposes a new direction for the decision-making problem of selecting pollutant targets for the total pollutant load management system. In addition, by deriving the impact of each pollutant and creating the marine pollution index, I was able to explore ways to establish policies such as selecting candidate sites for special management coastal zone in the future and derives future-oriented solutions to manage marine pollution. I was able to collect and refine marine environmental data affecting the marine environment, such as WQI, COD (chemical oxygen demand), and P (phosphorus), by time series, and analyze which marine pollutants have the most influence in the current special management coastal zone through XAI to propose a new direction for the decision making problem of selecting pollutant targets for the total pollutant load management system for each area. Also, Based on the marine pollution index, which reflects the impact of marine pollution sources, AI modeling to predict marine pollution one year from now was used to select candidate areas for future special management coastal zone and derive solutions for managing the selected special management coastal zone.
해양수산부는 매년 특별관리해역 현황을 보고하고 있다. 현재 우리나라는 주기적으로 해양환경측정망 자료를 활용해 해양오염의 정도를 파악하여 특별관리해역 연안오염총량관리 계획을 수립하고 평가하고 있다. 하지만 해양수산부에서 2016년 해양환경측정망 운영 결과, 대부분 해역이 WQI(Water Quality Index, 수질 평가 지수) 2등급 이상의 비교적 깨끗한 수질을 유지하고 있으나, 특별관리해역 중 울산 연안, 마산만 내측, 시화호 내측, 낙동강 하구 해역과 영산강 하구의 목포 연안 등 육상 오염물질 유입의 직접적인 영향을 받는 일부 정점 등에서는 부분적으로 WQI 4등급 이하의 결과를 보여 수질개선을 위한 대책이 필요한 것으로 나타났다. 이 연구는 해양환경측정망의 특별관리해역 데이터를 활용해 XAI(eXplainable Artificial Intelligence, 설명할 수 있는 인공지능) 분석을 통한 특별관리해역의 해양오염원의 현황을 파악하고, 주 오염원을 도출하여 연안오염총량관리제 오염물질 대상 항목을 선정하는 의사결정 문제에 새로운 방향성을 제안한다. 또한 오염물질별 영향도를 도출해 해양오염지수를 생성하여 향후 특별관리해역 후보지 선정과 같은 정책수립 방안을 모색하고 해양오염을 관리하기 위해 미래지향적 해결방안을 도출해 볼 수 있었다. WQI, COD(Chemical Oxygen Demand, 화학적 산소 요구량), P(Phosphorus, 인) 등 해양환경에 영향을 미치는 해양환경 데이터를 시계열별로 수집하고 정제하여 현재 특별관리해역에서 해양오염원의 영향도를 XAI를 통해 분석하여 각 해역별 연안오염총량 관리제 오염물질 대상 항목 선정 의사결정 문제에 새로운 방향성을 제안하였다. 또한 해양오염원의 영향도를 반영한 해양오염지수를토대로 1년 후 해양오염을 예측하는 AI 모델링을 하여 향후 특별관리해역 후보지를 선정하고 선정된 특별관리해역 후보지 구역을 관리하기 위한 해결방안을 도출해볼 수 있었다.
You have been reported one after another from other members for writing reviews that contain advertisements, busive language, personal attacks, or disparaging expressions. As a result, you cannot write a review.