메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Samat Ali (Xinjiang Normal University) Alim Murat (Xinjiang Normal University)
저널정보
한국정보처리학회 JIPS(Journal of Information Processing Systems) JIPS(Journal of Information Processing Systems) 제19권 제3호
발행연도
2023.6
수록면
355 - 369 (15page)
DOI
10.3745/JIPS.02.0197

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Since the widespread adoption of deep-learning and related distributed representation, there have beensubstantial advancements in part-of-speech (POS) tagging for many languages. When training wordrepresentations, morphology and shape are typically ignored, as these representations rely primarily oncollecting syntactic and semantic aspects of words. However, for tasks like POS tagging, notably inmorphologically rich and resource-limited language environments, the intra-word information is essential. Inthis study, we introduce a deep neural network (DNN) for POS tagging that learns character-level wordrepresentations and combines them with general word representations. Using the proposed approach andomitting hand-crafted features, we achieve 90.47%, 80.16%, and 79.32% accuracy on our own dataset for threemorphologically rich languages: Uyghur, Uzbek, and Kyrgyz. The experimental results reveal that thepresented character-based strategy greatly improves POS tagging performance for several morphologically richlanguages (MRL) where character information is significant. Furthermore, when compared to the previouslyreported state-of-the-art POS tagging results for Turkish on the METU Turkish Treebank dataset, the proposedapproach improved on the prior work slightly. As a result, the experimental results indicate that character-basedrepresentations outperform word-level representations for MRL performance. Our technique is also robusttowards the-out-of-vocabulary issues and performs better on manually edited text.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0