메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
순판 (단국대학교 커뮤니케이션 디자인 박사과정) 한석원 (단국대학교 커뮤니케이션 디자인 교수)
저널정보
한국상품문화디자인학회 상품문화디자인학연구 상품문화디자인학연구 제73호
발행연도
2023.6
수록면
57 - 73 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Known as the spokesmen of variety show, posters are media through the composition of which the audience are able to know about the characters, items, and background of variety show, which consequently influences the emotional cognition over the content of programs at the deep level. This paper mainly studies the layout, font and colour design of theLoveRealityProgram in 2022, thus offering certain reference to the development and direction of the entire style for variety show in the cultural industry. Firstly, with the posters to be displayed and promoted as research objects, the layout is analysed based on the proportion occupied by photos and logos, followed by further analysis by dividing the visual elements of the fonts into styles, types, and effects of the fonts. Finally, the study on the emotion expressed by visual images is conducted through I.R.I colour space. With the aim of further understanding the influence imposed by the vision of love reality posters on the audience, both questionnaire survey and data analysis are conducted. It is shown by the research results that the largest proportion occupied by logo in layout design is 10%-19% and the largest proportion occupied by photos is 20%-29%. In font design, most are artisticbodyand figurative text; using I.R.I colour space, it is obtained through analysis that the styles of colours are mostly gorgeous and elegant types. Through the analysis on the background of posters for love variety shows, it is found that photosaccounts for a proportion of 81.8%, with the use of real-person images occupying the highest use frequency.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0